• 336阅读
  • 0回复

NLPIR语义智能教学科研平台大数据的传播者 [复制链接]

上一主题 下一主题
 


  人类社会的每一次进步,都是由新技术引发新一轮产业革命、进而引发国家 管理和社会治理模式的重大变革而推动的。科技革命不断推动着产业的发展,只有那些抓住技术革命的战略机遇并迅速作出适应性调整的国家或民族才能不断生存发展,无视变化或拒绝变化的国家或民族将面临停滞和衰落。现在又到了必须选择的时刻。同以往不同,发生在大数据时代的技术革命是基于纳米技术、生物技术、信息技术和认知科学多学科联动的,这必将引发井喷式的产业创新。
  大数据,或称巨量资料,是指所涉及的资料量规模巨大,以致无法通过目前主流软件工具在合理时间内撷取、管理、处理并整理成为帮助企业达致经营决策目的的资讯。大数据技术不仅能够提高人们利用数据的效率,而且能够实现数据的再利用和重复利用,进而大大降低交易成本,提升人们开发自我潜能的空间。人们可以低成本或零成本进行事物信息全息式的纵向历史比对和横向现实比对。大数据技术自身不仅能够迅速衍生为新兴信息产业,还可以同云计算、物联网和智慧工程技术联动,支撑一个信息技术的新时代。
  NLPIR大数据语义智能教学科研平台是大数据语义智能分析专业的教学科研综合平台。平台以自然语言理解为核心,结合北理工团队多年的科学研究与一线教学经验,以科学严谨的方式,致力于提升学员大数据与人工智能的教学培训、科学研究与工程实践的水平。
  NLPIR大数据语义智能教学科研平台具有一套完善且丰富的教学体系,课程教材、视频教学、实训平台、实验验证和项目案例五位一体。
  NLPIR大数据语义智能教学科研平台教学内容丰富,主要围绕大数据、人工智能和自然语言理解三大核心领域展开,核心内容包括以下几个方面:
  1)科学的大数据观:大数据的定义,科学发展渊源;如何科学看待大数据?如何把握大数据,分别从“知著”、“显微”、“晓义”三个层面阐述科学的大数据观。
  2)大数据技术平台与架构:云计算技术与开源平台搭建;Hadoop、Spark等数据架构、计算范式与应用实践;TensorFlow深度学习平台。
  3)机器学习与常用数据挖掘:常用机器学习算法:Bayes, SVM,深度神经网络等;常用数据挖掘技术:关联规则挖掘、分类、聚类、奇异点分析;深度学习:CNN, RNN, LSTM, Attention模型,seq2seq模型。
  4)大数据语义精准搜索:通用搜索引擎与大数据垂直业务的矛盾;大数据精准搜索的基本技术:快速增量倒排索引、结构化与非机构化数据融合、大数据排序算法、语义关联、自动缓存与优化机制;大数据精准搜索语法:邻近搜索、复合搜索、情感搜索、精准搜索;
  5)非结构化大数据语义挖掘
  语义理解基础:ICTCLAS与汉语分词;内容关键语义自动标引与词云自动生成;大数据聚类;大数据分类与信息过滤;大数据去重、自动摘要;情感分析与情绪计算;不良信息智能过滤.
  6)知识图谱的大数据自动构建与应用:知识图谱概念;知识点的自动发现;基于bootstrapping的知识大数据生成;
  7)NLPIR智能语义平台:NLPIR智能语义分析在线云服务;NLPIR Parser语义分析平台实训;NLPIR智能语义二次开发接口与教程。
  8)大数据应用案例剖析与综述:国家电网大数据应用案例;新媒体传播创新与头条应用;公安非结构化大数据挖掘。
  在互联网经济时代,不同产业间的界限性越发模糊,而社会化决策也应用而生。大数据背景下,产品和服务的提供以及价值创造需更加贴近社会大众需求。
快速回复
限100 字节
如果您提交过一次失败了,可以用”恢复数据”来恢复帖子内容
 
上一个 下一个